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Edge dislocation in a lamellar inhomogeneity 
with a slipping interface 
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Struttura della Materia de/CNR and Centro Interuniversitario di Struttura della Materia 
de/MPI, Rome, Italy 

The paper develops the solution of the plane elasticity problem in which a source of internal 
strain is located inside an infinite lamellar inhomogeneity, by assuming that the lamella-matrix 
interface does not transmit tangential displacements or shear tractions. This condition is very 
likely to occur in lamellar or layered composite materials at elevated temperatures. It is found 
that the elastic field may be given in terms of the source bulk field plus one parameter formed 
from four elastic constants. The solution is used to calculate the image force on an edge 
dislocation within the lamellar inhomogeneity. It is shown that for some combination of 
material constants the force differs remarkably from that calculated in the perfectly-adhering 
interface case. 

1. Introduction 
In a previous paper [1] the elasticity problem of an 
edge dislocation in a lamellar inhomogeneity was 
solved, and the image force on the dislocation 
calculated and discussed, by assuming a perfect bond 
between matrix and lamella. This paper investigates 
the corresponding problem where the lamella-matrix 
interface, behaving as a viscous fluid layer, can trans- 
mit normal displacements and normal tractions, but 
not shear~tractions. 

The interaction of a dislocation with a slipping 
phase boundary was first investigated by Head [2], who 
proposed to take the slipping interface as a model of 
a grain boundary at high temperatures. Since then, 
circular inclusions with slipping interfaces interacting 
with concentrated forces, and with edge dislocations, 
have been studied respectively by Dundurs et al. [3] 
and Dundurs and Gangadharan [4]; Ghahremani [5] 
considered a spherical inclusion with slipping interface 
loaded in tension, and Tsuchida et al. [6] dealt with a 
slipping elliptic inclusion undergoing a uniform 
eigenstrain. It has been generally found that the 
elastic solution is fundamentally different from those 
obtained by imposing non-slipping boundary con- 
ditions. Moreover, some of the above-mentioned 
studies were used by Srolovitz et al. [7-10] in an at- 
tempt to explain the creep behaviour of dispersion 
strengthened alloys at high temperatures. These 
authors also suggested [8] that at homologous tem- 
peratures above approximately 0.6 the assumption of 
a sliding interface should be more appropriate than 
that of an adhering one. 

The present paper may contribute to the theory of 
the high temperature mechanical behaviour of 
materials having a phase in lamellar form, and to that 
of composite layered materials, whose technological 
importance is well known [1, 11]. In section 2 the 
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elasticity problem of an internally stressed slipping 
lamella is stated, and the boundary conditions are 
written in complex notation. In section 3 the complete 
solution of the elasticity problem is worked out. In 
section 4 the image force on an edge dislocation is 
calculated, plotted, and discussed by comparing it 
with the force on a dislocation within an adhering 
lamella. It is in particular deduced that the mechanical 
behaviour of a lamella embedded in a harder matrix 
may sensibly change when the temperature is raised to 
a point where the interface adherence is lost. 

2. The elasticity problem 
The two-dimensional model which is the object of the 
present investigation is sketched in Fig. 1. An infinite 
elastic strip occupies the region - a ~< y ~< a (region 2) 
and borders on the elastic half-planesy >~ a (region 1) 
and y ~< - a  (region 3). The shear modulus and the 
Poisson's ratio of region 2 (lamella) will be denoted by 
G2 and v2, respectively, while G and v denote the shear 
modulus and the Poisson's ratio of regions 1 and 3 
(matrix). The whole material is assumed to be under 
generalized plane stress or plane strain conditions. 

As explained in the introduction, it is assumed that 
the interfaces y = a and y = - a  are not adhering, 
i.e. they do not transmit tangential tractions or 
tangential displacements. Thus, the appropriate 
boundary conditions may be formally written as 
follows: 

.(1) = ~(2). (1) 0"!2! = O; U (I) = U (2)') 
y )  _y , y ,  (Txy ~ y y 

f o r y  = a 

1.(3) ~- ~(2). rr(3) 0-(2) O; u (3) = u (2) (1) 
--yy - - y y ,  - -xy  xy  y y 

f o r y  = - a  

where a~ (e, fl = x, y) are the in-plane components of 
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the stress tensor, u,_ and u>. are the displacement com- 
ponents, and superscripts specify regions. Now we 
propose to express the conditions (1) in a form suit- 
able for the application of the complex variable 
method. First of all we remember that stresses and 
displacements may be expressed through the complex 
analytic functions <p(z), r by the following formulas 
[12]: 

a., . , . -  ia.v : ~o(z)+ ~o(z)-  2~o];(z)- r 

+ ,,,.,., : + (z) 2 (z)? 
2G(u,. + iu,.) = ~:O(z) - z ~ ( z )  - ~,(z) ) 

wherez = x + iy(i  2 = - 1 ) , K  = 3 - 4vforp lane  
strain, ~c = (3 - v)/(l + v) for plane stress, and rigid 
body displacements have been omitted in the last 
equation. Then, we take into account that, apart from 
an arbitrary additive constant, the resultant force 
(X, Y) acting on the boundary between two regions 
may be written as [12]: 

Y -  iX = -[(p(z) + zq/(z) + 0(z)] (3) 

In terms of this force the boundary conditions (1) may 
be replaced by: 

. (]) .(2) "~ y( ] )  _- y(2);  X 0) = X (2) = 0; % = ".r / 

f o r y  = a ~  
(3) (2) ( 1 3  y(3) = y(2); X(3) X(2) O; Hy = b/y ( 

/ 
for),  = -a) 

By introducing the dimensionless coordinates 

4 = x/a tl = y/a 

and the function 

qb(4 , q; 2) = a-'[~o(z) + 22(p'(z) + 2r (4) 

equations (3) and (2) may be written: 

Y -  iX = -a@(r 1) ] 

2G(u.,. + iu:.) = a~cO ~, q; - 

Finally, comparing (5) and (1'), we obtain the con- 
ditions at the slipping interface in the following form: 

Re[r 1; 1)] = Re[O2(~, 1; 1)] 

Im[q)l(~, 1; 1)] = Im[q)2(~, 1; 1)] 

= 0 (6) 

= ~c2Im[(:I)2(4,1 , - 1 ) 1  

Re[qb3(~, - 1 ;  1)] = Re[@2(~, - 1 ;  1)] 

Im[@3(4, - 1 ;  1)] = Im[@2(4, - 1 ;  1)] 

= 0 (7) 

= ,~2Im [@~(4, l, _ 1 ) ]  

where subscripts denote regions, Re( ) denotes the 
real part, Im ( ) the imaginary part, and 

F = G2/G 

3. Elastic fields 
Let us assume that an edge dislocation (or, more 
generally, a line singularity perpendicular to the xy 
plane) lies at a position (0, at/0), with - 1 < % < 1 

(see Fig. 1). The solution of the elasticity problem (i.e. 
the determination of the elastic field generated by the 
dislocation in the whole material) will be constructed 
by the use of the infinite set of dislocation images (0, 
at/k), where 

r/h = 2k + (-1t%/0 (k = 0, + 1, + 2,...) 

Since both regions 1 and 3 are free of elastic singu- 
larities, and the stresses must vanish at infinity, the 
following double-series expansions of the complex 
potentials may be considered [1, 11]: 

(~01(Z) = a ,  A,,.o In ~_,, + ,,~, ......... j (10) 

V B ~ "'~ ~ (z) a ,  B,,.o In ~" ,, + mL...~_l . . . . . . . . .  / 

k ~ (11)  

Ip2(Z ) = a ~- ~ Dk.oln ~k + ,,~,=l ~.,,,sk ] 

O3 (z) = a ,.0 In ~, + E,,,,,, ~,Tm 
t I 1 

a ,,o In ~,, + F,,.,,,~,;"' 
i n 1 

0 3 ( z )  = 

where 

and commas are used to merely separate subscripts. 
Henceforth, the following ranges of the subscripts k, 
rn and n will be implied: 

k = 0,_+ 1 , + 2  .... m,n  = 0 , 1 , 2 , 3  .... 

Region 1 

( G , ~ )  

Region 2 

( G a , ~  2 ) 

Region 3 

( G , ~ )  

y= a 

a t /o  

0 

Y = -a  

x ) 

Figure 1 In t e rna l ly  s t ressed  lamel la r  i n h o m o g e n e i t y .  
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The complex coefficients Co,m and D0,~ yield the elastic 
field generated by the source in an infinite homo- 
geneous medium of elastic constants G2 and v2 (bulk 
field). If the bulk field is given, then the problem is 
reduced to the calculation of the expansion coeffi- 
cients A . . . .  B . . . .  Emm , F.,m, C_._Lm, D_n_l .m,  Cn+l ,  m 

and D.+~,~. This is accomplished by using the bound- 
ary conditions (6) and (7). 

First we introduce (10)-(12) into (4), obtaining 

�9 , (G . ;  ~.) 

n=0 rn=0 

(13) 

k = - ~  m=0 

(I) 3 (~, t], ~) 

= ~ ~ [En,man.m + )~P,~,m(rl)an.m] 
n=O m=O 

where 

Q.,m(tl) = Bn,m - -  mAn ,m 

+ i(2~I - rl_n)OOmAn,m 1 

M~,,~(~) = Dk.m -- mG,m 

+ i(2t/ -- tlk)COmCk, m 1 

P.,m(tl) = F.,,. - mEn, m 

+ i(2rl -- ~l.)%,E., . ,  

(14) 

and 

f2~,o = ln ffk f~k.m = ~fm for m > 0 

~,~ = m - - l - - b l , m  A m _ l  = Ck, t = E . _ ,  = 0 

51,m being the Kronecker symbol. Substituting (13) 
into (6) and (7), taking into account that 

~'~k,m = ~'~l-k,m for r/ = 1 

(~k,,~ = f~-l-k,m for r/ = - 1  

and comparing coefficients of the variables f~k,m having 
the same subscripts, we obtain 

A.,m = O.,m(1) 

- c . . . .  + ~.+1,m(1) 

= G+l ,m + m . . . .  (1) 

= ~ ( c  ~ -  G + I , ~ )  

E..~ = P . , m ( - 1 )  

= C.... + Y1_1 . , m ( - 1 )  

C_, . . . .  + M...~(--1) 

: c ~ ( G , o , -  C_, .... ) 

K2+ 1 
- (15) 

F(K + 1) 

where 

Finally, remembering (14), and after some calculation, 

the following recursion formulas are worked out: 

C _ l ,  m = (0~ + 1) -1 

x [(m + a)Co,m - i(2 + r/o)o~C o .... , 

C~,m = (or + 1) -1 

x [(m + ~)C0,,~ + i(2 - ~ ] O ) ( . O r n G , m _ l  

C .  2,m = (0~ + 1) -1 

- / % , ~ ]  

-/%,M 
)(16) 

x [2c~C.+~,m -- 4ie),~(~.+1.~_, -- (0r --1)C ..... ] 

Cn+2, m ~- (0~ + 1) -1 

x [ 2 a C _  1 . . . . .  + 4 i o ) . , C _ ~  . . . . .  ~ - ( a  - 1 )C. ,m]  

D_I . . . .  = (m - c0C_ 1 . . . .  

+ i(2 + q_t_ . )co , .C l . . . . .  l 

+ (~ - l )G .m  

D,+I, m = (m -- ~) C.+l, m 

-- i(2 -- q.+l)m,~C.+l,m_l 
(17) 

"~ (~ - -  1 ) C  . . . .  

A.,m = ~ (C  .,m --  C.+1,,~) 

B.,m = (m + 1)A.,m - i(2 - tl_.)COmA . . . .  1 

E.,m = ~(C., , .  - C_1 . . . .  ) 

F.,m = (m + 1)E.,m + i(2 + tl.)c0mE..m_l 

The set of  equations (10)-(12), (16) and (17) solves 
the problem of determining the elastic field in the 
whole material when the bulk coefficients C0,~ and Do, m 

are given (convergency is assured by the fact that 
[a/(a + 1)[ < 1 for all admissible combinations of  
material constants.) For  an edge dislocation with 
Burgers vector (bx, by), the solution is completed by 

Do,1 = iytl0 
(18) 

= 0 

the well known relationships: 

C0,0 = 7 D0,0 = 

Co,m+l = Do,m+2 

where 

G2(by - ibx) 
7 - (19) 

a~z(K 2 q- 1) 

Equations (16) and (17) show that all the elastic 
potentials can be expressed in terms of  the bulk coef- 
ficients plus one parameter, e, formed from four 
elastic constants. This result is somewhat surprising, 
because a lamella with an adhering interface [1], as 
well as finite inhomogeneities with slipping [4] or 
adhering interfaces, requires two parameters. It is also 
worth noting that the coefficients given by (16) and 
(17) do not vanish for c~ = 1. This means that, as 
expected, an image field generated by a slipping inter- 
face exists even when lamella and matrix are made of 
the same material. Of  course, in such conditions no 
image field is generated by an adhering interface. 

4. Force  on d i s l o c a t i o n  
The force (Fx, Fy) acting on the unit length of an edge 
dislocation located at z = ZD, may be expressed 
through the complex potentials by means of  the 
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= 0. (a) Adhering interface; (b) slipping interface. 

general formula [11]: 

, 5 -  iF~ = b i l l  

X ~ 9 ( m ( Z D )  -1- O i m ( Z D )  -1- 

7 7 

(20) 

where the image potentials ~0~ (z), I//im ( Z )  represent the 
elastic field produced by external loads, including 
dislocation images. Clearly, in the present case it is 

ZD = iar/0 (21) 

and the image potentials are obtained by dropping all 
terms for k = 0 in (11): 

, C m q0im(Z ) = a ~  C .01n ~'_. + ~ . . . .  { 

+ a ~  C.,01n ~n Jr- iCn,m~n m 
r ~ = l  

+ ay~ D,,,01n (,, + ~D. ,m{2  m 
n = l  m = l  

Thus, the image force may be numerically evaluated 
through (20)-(22), and using (16)-(19) for the cal- 

culation of the complex constants C .... D ...... C.,m 
and D.,m. 

Since for symmetry reasons F~ vanishes identically, 
the force is parallel to the dislocation glide direction 
when bx = 0, or 

9 = 7 

In this case Equation (20) reduces to a simpler formula, 
which may be partially written in explicit form by 
means of (22), (16) and (17), yielding 

1 
- - yby(c~-~(c~ - 1)1) 1 - % 

where 

F _ 

- b y I m  ~ ~" D_.,0 
.=~ [ i(~o - ~_ . )  + 

.+l F H n,rn(~]O) 
E i m - l  . . . .  -~- 

,,,=l L01o - ~/ ,,)m+, 

,) 
1 + %  

D,,,o 
i(~0 - r  

H~,..(,7o) 
( , o - r  ] }  

( 2 3 )  

Hk.,,(tlo ) = rn(Dk,,, + i t / o ~ , ~ , C k , , , _ l )  

In other words, the force is the sum of the forces 
exerted by the slipping interfaces t/ = 1 and r/ = - l 
considered as simply bimetallic (first line of (23)), plus 
a remainder representing the effect of the higher-order 
images. Generally such remainder is appreciable, and 

r  

o 

L L  

- 0.25 

- 0.50 

- 0.75 

, , , , , 

~.~---_ i - r l o .1  
! ~ ~ - - - - . g , ~  ma..x 

" , ,  : " , ,  i i �9 . . . . .  - . ~ r  
adher ing ~ .  ~ ' ~ .  ~ : 

i " " , ,  ~ ' , ~  : s l ipping 

~ ' , \ , : ,  ~ 

-1 . , , ,,, :x '~, x -1 
0.4 0.5 0.6 0 .7  0 .8  

7o 
(a)  

~ l  

o 
(u 

I J =  

- 0 . 2 5  

- 0 .50 

- 0.75 

~ . i  - r:o.1 

. . . . . . . . . . . . . . . . . . .  ,, . . . . . . . . .  ! . . . . . . . . . . . . . . . .  :.., . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  ...... 1 
"':. \~  ' , \ 1  

, i -  ~ : \  / 
0.4 0.5 0 .6  0.7 0 .8  

7o 
( b )  

F i g u r e  3 C o m p a r i s o n  b e t w e e n  a d h e r i n g  a n d  s l i p p i n g  i m a g e  f o r c e  o n  e d g e  d i s l o c a t i o n  f o r  b.,. = 0. ( a )  v = 0 .4 ,  v 2 = 0 .1 ;  (b )  v = 0 .1 ,  v 2 = 0 .4 .  

1 6 2 1  



not less than 20 pairs of images should be included in 
order to reduce the error below 1%. 

Figs 2 and 3 plot the force for plane strain and 
b.,. = 0, and have been selected in order to display the 
differences between the present case and that of a 
lamella with adhering interface treated in a previous 
work [1]. Fig. 2a refers to an adhering interface* and 
shows the force versus the relative hardenss F for three 
Poisson's ratio combinations. Fig. 2b is the analogous 
plot for a lamella with a slipping interface. No notice- 
able difference between adhering and slipping inter- 
face can be seen for v = v2, whereas a Poisson's ratio 
mismatch implies important modifications. In Fig. 2a 
curves corresponding to different mismatches do not 
intersect. In Fig. 2b the curves intersect for F = F0, 
with F 0 ~ 0.2. This means that (i) for F = F 0 the force 
does not substantially depend on the Poisson's ratios; 
(ii) for F > F 0 the slipping interface behaves like an 
adhering one; (ii) for F < F 0 the trend of the force 
against the Poisson's ratio mismatch is reversed when 
an adhering interface becomes slipping. This inversion 
occurs in whole range of dislocation positions, as 
confirmed by plots like those shown in Fig. 3. 

To sum up, in both cases of adhering and slipping 
interfaces a dislocation is generally attracted by the 
nearest interface if the lamella is embedded in a softer 
matrix (F > 1), whereas it is repelled by a hard 
matrix (F < 1). Therefore, in the latter case the 
equilibrium at r/0 = 0 is stable. If the matrix is hard 
enough, then a change of the interface from adhering 

to slipping may sensibly increase (decrease) the restor- 
ing force around r/0 = 0 for v < V2(v > v2), i.e. the 
lamella may undergo a hardening (softening) process. 
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